KANALGERÄTMIT MITTLERER PRESSUNG

MONOSPLIT-KANALGERÄT

Die Hokkaido Ducted-Systeme kombinieren erstklassige Funktionen mit einem schlichten Design für eine einfache Installation und Wartung. Unsere Kanalgeräte eignen sich für private und gewerbliche Anwendungen.

BETRIEBSWEISE

-15~**52°**C

-15~24°C

LEISTUNG

MODELL	SEER	SCOP	
3,52 kW	6,40	4,00	
5,28 kW	6,10	4,00	
7,03 kW	6,10	4,00	

WOHNEN UND GEWERBE R32

\sim

HRDDM 350-530 ZAL | HRDDS 710 ZA

-15~52° C Beim Kühlen

Kondensatablasspumpe inklusive 10~160 Pa einstellbare Prävalenz

-15~24° C Beim Heizen Kabelgebundene Steuerung incluso

Modell Innengerät			HRDDM 350 ZAL	HRDDM 530 ZAL	HRDDS 710 ZA
Modell Außengerät			HCKDS 350 ZA	HCKDS 530 ZA	HCKDS 710 ZA
Тур				Wärmepumpe DC-Inverter	
Steuerung (Serienausstattung)				Kabelgebundene Steuerung	
Nominale Daten				nabelgebandene steaterang	
Nennleistung (T=+35°C)		kW	3,52 (1,35~14,40)	5,28 (1,53~5,60)	7,03 (2,16~8,20)
Nennleistungsaufnahme (T=+35°C)	Kühlen	kW	1,03 (0,26~1,60)	1,55 (0,47~2,30)	2,17 (0,67~3,30)
Nominaler Energieeffizienz-Koeffizient	Kullicii	EER1	3,41	3,40	3,24
Nennleistung (T=+7°C)		kW	3,81 (1,24~5,30)	5,60 (1,40~6,20)	7,91 (1,98~9,30)
Nennleistungsaufnahme (T=+7°C)	Heizen	kW	1,02 (0,19~1,51)	1,49 (0,46~2,25)	2,13 (0,65~3,30)
Nominaler Energieeffizienz-Koeffizient	HCIZCII	COP1	3.73	3.76	3.71
Saisonbedingte Daten		COI ·	5,15	5,70	5,71
Theoretische Last (Pdesignc)		kW	3,50	5,40	7,10
Saisonaler Energieeffizienzindex		SEER2	6,40	6,10	6,10
Saisonale Energieeffizienzklasse	Kühlen	626/20113	A++	A++	A++
Energieverbrauch pro Jahr		kWh/J	193	307	406
Theoretische Last (Pdesignh) @ -10°C		kW	2.70	4.40	5,40
Saisonaler Energieeffizienzindex	Heizen	SCOP2	4,00	4,00	4,00
Saisonale Energieeffizienzklasse	(durchschnittliche	626/20113	A+	A+	A+
Energieverbrauch pro Jahr	Klimabedingungen)	kWh/J	931	1520	1884
Elektrische Daten		KWII/J	231	1320	1001
Stromversorgung	Außengerät	Ph-V-Hz		1Ph - 220/240V - 50Hz	
Versorgungskabel	Nubeligelat	Typ	3 x 2,5 mm ²	3 x 2,5 mm ²	3 x 4,0 mm ²
Anschlusskabel zwischen I.G. und A.G.		Anz.	4	4	4
	Kühlen	A	4,50 (1,10~7,00)	6,70 (2,00~10,00)	9,40 (2,90~14,30)
Stromaufnahme	Heizen	A	4,40 (0,80~6,60)	6,50 (2,00~9,80)	9,30 (2,80~14,40)
Maximaler Strom	HCIZCH	A	9.00	12.00	16.00
Aufgenommene Nennleistung		kW	1.70	2,40	3,65
Kühlkreis			1,7 0	27.10	3,03
Kältemittel ⁴		Typ (GWP)		R32 (675)	
Vorgeladenes Kältemittel		Kq	0,78	1.03	1,45
Tonnen CO2-Äquivalente		t	0,527	0,695	0,979
Durchmesser Kühlleitungen Flüss./Gas		mm (Zoll)	6,35(1/4") / 12,74(1/2")	6,35(1/4") / 12,74(1/2")	9,52(3/8") / 15,88(5/8")
Max. Splitlänge		m	25	30	50
Max. Höhenunterschied I.G. /A.G.		m	10	20	25
Splitlänge ohne zusätzliche Ladung		m	5	5	5
Zusätzliche Ladung		g/m	30	30	50
Angaben Innengeräten		J			
Abmessungen	LxTxH	mm	700x700x245	700x700x245	1000×700×245
Nettogewicht	·	Kg	21	22	32
Schalldruckpegel	Erp test	dB(A)	55	59	55
Schallleistungspegel	Hi/Mi/Lo	dB(A)	37/34/32	44/41/37	43/41/39
Aufbereitete Luft	Hi/Mi/Lo	m³/h	720/600/500	900/750/630	1400/1190/980
Förderhöhe des Ventilators	Std/Max	Pa	25/160	25/160	25/160
Angaben Außengeräte				***	
Abmessungen	LxTxH	mm	709x280x536	785x300x555	900x350x700
Nettogewicht		Kg	23	29	43
Schalldruckpegel	Erp test	dB(A)	64	65	70
Schallleistungspegel		dB(A)	54	55	58
Aufbereitete Luft	Max	m³/h	2000	2600	4200
Betriebsgrenzen (Außentemperatur)	Kühlen	°C		-15~52	
	Heizen	°C	-15~24		

1. Gemessener Wert gemäß der harmonisierten Norm EN 14511. 2. Verordnung (EU) Nr. 206/2012 - - Gemessener Wert nach der harmonisierten Norm EN 14825. 3. Delegierte Verordnung (EU) Nr. 626/2011 über die neue Kennzeichnung des Energieverbrauchs von Klimageräten. 4 Kältemittelverlust trägt zum Klimawandel bei. Wenn Kältemittel in die Atmosphäre gelangen, tragen jene mit einem geringeren Treibhauspotential (Global warming potential, GWP) weniger zur globalen Erwärmung bei als Kältemittel mit einem höheren GWP. Dieses Gerät enthält eine Kühlflüssigkeit mit einem GWP von 675. Wenn 1 kg dieser Kühlflüssigkeit in die Atmosphäre abgegeben werden würde, wäre die die Auswirkung auf die globale Erwärmung 675 Mal höher als 1 kg CO2 für eine Zeitdauer von 100 Jahren. Keinesfalls darf der Kunde am Kühlkreis eingreifen oder das Produkt zerlegen. Im Bedarfsfall muss sich immer an Fachpersonal gewandt werden.

